final class DataFrameNaFunctions extends AnyRef
Functionality for working with missing data in DataFrames.
- Annotations
 - @Stable()
 - Source
 - DataFrameNaFunctions.scala
 - Since
 1.3.1
- Alphabetic
 - By Inheritance
 
- DataFrameNaFunctions
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - All
 
Value Members
- 
      
      
      
        
      
    
      
        final 
        def
      
      
        !=(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ##(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ==(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        asInstanceOf[T0]: T0
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        clone(): AnyRef
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(minNonNulls: Int, cols: Seq[String]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.(Scala-specific) Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(minNonNulls: Int, cols: Array[String]): DataFrame
      
      
      
Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(minNonNulls: Int): DataFrame
      
      
      
Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values.Returns a new
DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(how: String, cols: Seq[String]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.(Scala-specific) Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.If
howis "any", then drop rows containing any null or NaN values in the specified columns. Ifhowis "all", then drop rows only if every specified column is null or NaN for that row.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(how: String, cols: Array[String]): DataFrame
      
      
      
Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.Returns a new
DataFramethat drops rows containing null or NaN values in the specified columns.If
howis "any", then drop rows containing any null or NaN values in the specified columns. Ifhowis "all", then drop rows only if every specified column is null or NaN for that row.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(cols: Seq[String]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.(Scala-specific) Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(cols: Array[String]): DataFrame
      
      
      
Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.Returns a new
DataFramethat drops rows containing any null or NaN values in the specified columns.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(how: String): DataFrame
      
      
      
Returns a new
DataFramethat drops rows containing null or NaN values.Returns a new
DataFramethat drops rows containing null or NaN values.If
howis "any", then drop rows containing any null or NaN values. Ifhowis "all", then drop rows only if every column is null or NaN for that row.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        drop(): DataFrame
      
      
      
Returns a new
DataFramethat drops rows containing any null or NaN values.Returns a new
DataFramethat drops rows containing any null or NaN values.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        eq(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        equals(arg0: Any): Boolean
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(valueMap: Map[String, Any]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat replaces null values.(Scala-specific) Returns a new
DataFramethat replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type:
Int,Long,Float,Double,String,Boolean. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
df.na.fill(Map( "A" -> "unknown", "B" -> 1.0 ))
- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(valueMap: Map[String, Any]): DataFrame
      
      
      
Returns a new
DataFramethat replaces null values.Returns a new
DataFramethat replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type:
Integer,Long,Float,Double,String,Boolean. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
import com.google.common.collect.ImmutableMap; df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0));
- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Boolean, cols: Array[String]): DataFrame
      
      
      
Returns a new
DataFramethat replaces null values in specified boolean columns.Returns a new
DataFramethat replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
 2.3.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Boolean, cols: Seq[String]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat replaces null values in specified boolean columns.(Scala-specific) Returns a new
DataFramethat replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
 2.3.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Boolean): DataFrame
      
      
      
Returns a new
DataFramethat replaces null values in boolean columns withvalue.Returns a new
DataFramethat replaces null values in boolean columns withvalue.- Since
 2.3.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: String, cols: Seq[String]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat replaces null values in specified string columns.(Scala-specific) Returns a new
DataFramethat replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: String, cols: Array[String]): DataFrame
      
      
      
Returns a new
DataFramethat replaces null values in specified string columns.Returns a new
DataFramethat replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Double, cols: Seq[String]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Long, cols: Seq[String]): DataFrame
      
      
      
(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
 2.2.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Double, cols: Array[String]): DataFrame
      
      
      
Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Long, cols: Array[String]): DataFrame
      
      
      
Returns a new
DataFramethat replaces null or NaN values in specified numeric columns.Returns a new
DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
 2.2.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: String): DataFrame
      
      
      
Returns a new
DataFramethat replaces null values in string columns withvalue.Returns a new
DataFramethat replaces null values in string columns withvalue.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Double): DataFrame
      
      
      
Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        fill(value: Long): DataFrame
      
      
      
Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.Returns a new
DataFramethat replaces null or NaN values in numeric columns withvalue.- Since
 2.2.0
 - 
      
      
      
        
      
    
      
        
        def
      
      
        finalize(): Unit
      
      
      
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws( classOf[java.lang.Throwable] )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        getClass(): Class[_]
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        hashCode(): Int
      
      
      
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        isInstanceOf[T0]: Boolean
      
      
      
- Definition Classes
 - Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        ne(arg0: AnyRef): Boolean
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notify(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        notifyAll(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @native()
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        replace[T](cols: Seq[String], replacement: Map[T, T]): DataFrame
      
      
      
(Scala-specific) Replaces values matching keys in
replacementmap.(Scala-specific) Replaces values matching keys in
replacementmap.// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed"));
- cols
 list of columns to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
 value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        replace[T](col: String, replacement: Map[T, T]): DataFrame
      
      
      
(Scala-specific) Replaces values matching keys in
replacementmap.(Scala-specific) Replaces values matching keys in
replacementmap.// Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", Map("UNKNOWN" -> "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", Map("UNKNOWN" -> "unnamed"));
- col
 name of the column to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
 value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        replace[T](cols: Array[String], replacement: Map[T, T]): DataFrame
      
      
      
Replaces values matching keys in
replacementmap with the corresponding values.Replaces values matching keys in
replacementmap with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed"));
- cols
 list of columns to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
 value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        
        def
      
      
        replace[T](col: String, replacement: Map[T, T]): DataFrame
      
      
      
Replaces values matching keys in
replacementmap with the corresponding values.Replaces values matching keys in
replacementmap with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", ImmutableMap.of("UNKNOWN", "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", ImmutableMap.of("UNKNOWN", "unnamed"));
- col
 name of the column to apply the value replacement. If
colis "*", replacement is applied on all string, numeric or boolean columns.- replacement
 value replacement map. Key and value of
replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
 1.3.1
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        synchronized[T0](arg0: ⇒ T0): T0
      
      
      
- Definition Classes
 - AnyRef
 
 - 
      
      
      
        
      
    
      
        
        def
      
      
        toString(): String
      
      
      
- Definition Classes
 - AnyRef → Any
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long, arg1: Int): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... )
 
 - 
      
      
      
        
      
    
      
        final 
        def
      
      
        wait(arg0: Long): Unit
      
      
      
- Definition Classes
 - AnyRef
 - Annotations
 - @throws( ... ) @native()