K - the key class.V - the value class.C - the combiner class.public class ShuffledRDD<K,V,C> extends RDD<scala.Tuple2<K,C>>
| Constructor and Description | 
|---|
| ShuffledRDD(RDD<? extends scala.Product2<K,V>> prev,
           Partitioner part,
           scala.reflect.ClassTag<K> evidence$1,
           scala.reflect.ClassTag<V> evidence$2,
           scala.reflect.ClassTag<C> evidence$3) | 
| Modifier and Type | Method and Description | 
|---|---|
| void | clearDependencies()Clears the dependencies of this RDD. | 
| scala.collection.Iterator<scala.Tuple2<K,C>> | compute(Partition split,
       TaskContext context):: DeveloperApi ::
 Implemented by subclasses to compute a given partition. | 
| scala.collection.Seq<Dependency<?>> | getDependencies()Implemented by subclasses to return how this RDD depends on parent RDDs. | 
| Partition[] | getPartitions()Implemented by subclasses to return the set of partitions in this RDD. | 
| scala.Some<Partitioner> | partitioner()Optionally overridden by subclasses to specify how they are partitioned. | 
| RDD<? extends scala.Product2<K,V>> | prev() | 
| ShuffledRDD<K,V,C> | setAggregator(Aggregator<K,V,C> aggregator)Set aggregator for RDD's shuffle. | 
| ShuffledRDD<K,V,C> | setKeyOrdering(scala.math.Ordering<K> keyOrdering)Set key ordering for RDD's shuffle. | 
| ShuffledRDD<K,V,C> | setMapSideCombine(boolean mapSideCombine)Set mapSideCombine flag for RDD's shuffle. | 
| ShuffledRDD<K,V,C> | setSerializer(Serializer serializer)Set a serializer for this RDD's shuffle, or null to use the default (spark.serializer) | 
aggregate, barrier, cache, cartesian, checkpoint, cleanShuffleDependencies, coalesce, collect, collect, context, count, countApprox, countApproxDistinct, countApproxDistinct, countByValue, countByValueApprox, dependencies, distinct, distinct, doubleRDDToDoubleRDDFunctions, filter, first, flatMap, fold, foreach, foreachPartition, getCheckpointFile, getNumPartitions, getResourceProfile, getStorageLevel, glom, groupBy, groupBy, groupBy, id, intersection, intersection, intersection, isCheckpointed, isEmpty, iterator, keyBy, localCheckpoint, map, mapPartitions, mapPartitionsWithEvaluator, mapPartitionsWithIndex, max, min, name, numericRDDToDoubleRDDFunctions, partitions, persist, persist, pipe, pipe, pipe, preferredLocations, randomSplit, rddToAsyncRDDActions, rddToOrderedRDDFunctions, rddToPairRDDFunctions, rddToSequenceFileRDDFunctions, reduce, repartition, sample, saveAsObjectFile, saveAsTextFile, saveAsTextFile, setName, sortBy, sparkContext, subtract, subtract, subtract, take, takeOrdered, takeSample, toDebugString, toJavaRDD, toLocalIterator, top, toString, treeAggregate, treeAggregate, treeReduce, union, unpersist, withResources, zip, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitionsWithEvaluator, zipWithIndex, zipWithUniqueId$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic void clearDependencies()
RDDUnionRDD for an example.public scala.collection.Iterator<scala.Tuple2<K,C>> compute(Partition split, TaskContext context)
RDDpublic scala.collection.Seq<Dependency<?>> getDependencies()
RDDpublic Partition[] getPartitions()
RDD
 The partitions in this array must satisfy the following property:
   rdd.partitions.zipWithIndex.forall { case (partition, index) => partition.index == index }
public scala.Some<Partitioner> partitioner()
RDDpartitioner in class RDD<scala.Tuple2<K,C>>public ShuffledRDD<K,V,C> setAggregator(Aggregator<K,V,C> aggregator)
public ShuffledRDD<K,V,C> setKeyOrdering(scala.math.Ordering<K> keyOrdering)
public ShuffledRDD<K,V,C> setMapSideCombine(boolean mapSideCombine)
public ShuffledRDD<K,V,C> setSerializer(Serializer serializer)