public class GradientBoostedTreesModel extends Object implements Saveable
param: algo algorithm for the ensemble model, either Classification or Regression param: trees tree ensembles param: treeWeights tree ensemble weights
| Modifier and Type | Class and Description | 
|---|---|
| static class  | org.apache.spark.mllib.tree.model.TreeEnsembleModel.SaveLoadV1_0$ | 
| Constructor and Description | 
|---|
| GradientBoostedTreesModel(scala.Enumeration.Value algo,
                         DecisionTreeModel[] trees,
                         double[] treeWeights) | 
| Modifier and Type | Method and Description | 
|---|---|
| scala.Enumeration.Value | algo() | 
| static RDD<scala.Tuple2<Object,Object>> | computeInitialPredictionAndError(RDD<LabeledPoint> data,
                                double initTreeWeight,
                                DecisionTreeModel initTree,
                                Loss loss)Compute the initial predictions and errors for a dataset for the first
 iteration of gradient boosting. | 
| double[] | evaluateEachIteration(RDD<LabeledPoint> data,
                     Loss loss)Method to compute error or loss for every iteration of gradient boosting. | 
| static GradientBoostedTreesModel | load(SparkContext sc,
    String path) | 
| int | numTrees()Get number of trees in ensemble. | 
| static void | org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) | 
| static org.slf4j.Logger | org$apache$spark$internal$Logging$$log_() | 
| JavaRDD<Double> | predict(JavaRDD<Vector> features)Java-friendly version of  org.apache.spark.mllib.tree.model.TreeEnsembleModel.predict. | 
| RDD<Object> | predict(RDD<Vector> features)Predict values for the given data set. | 
| double | predict(Vector features)Predict values for a single data point using the model trained. | 
| void | save(SparkContext sc,
    String path)Save this model to the given path. | 
| String | toDebugString()Print the full model to a string. | 
| String | toString()Print a summary of the model. | 
| int | totalNumNodes()Get total number of nodes, summed over all trees in the ensemble. | 
| DecisionTreeModel[] | trees() | 
| double[] | treeWeights() | 
| static RDD<scala.Tuple2<Object,Object>> | updatePredictionError(RDD<LabeledPoint> data,
                     RDD<scala.Tuple2<Object,Object>> predictionAndError,
                     double treeWeight,
                     DecisionTreeModel tree,
                     Loss loss)Update a zipped predictionError RDD
 (as obtained with computeInitialPredictionAndError) | 
public GradientBoostedTreesModel(scala.Enumeration.Value algo,
                                 DecisionTreeModel[] trees,
                                 double[] treeWeights)
public static RDD<scala.Tuple2<Object,Object>> computeInitialPredictionAndError(RDD<LabeledPoint> data, double initTreeWeight, DecisionTreeModel initTree, Loss loss)
data: - training data.initTreeWeight: - learning rate assigned to the first tree.initTree: - first DecisionTreeModel.loss: - evaluation metric.public static RDD<scala.Tuple2<Object,Object>> updatePredictionError(RDD<LabeledPoint> data, RDD<scala.Tuple2<Object,Object>> predictionAndError, double treeWeight, DecisionTreeModel tree, Loss loss)
data: - training data.predictionAndError: - predictionError RDDtreeWeight: - Learning rate.tree: - Tree using which the prediction and error should be updated.loss: - evaluation metric.public static GradientBoostedTreesModel load(SparkContext sc, String path)
sc - Spark context used for loading model files.path - Path specifying the directory to which the model was saved.public scala.Enumeration.Value algo()
public DecisionTreeModel[] trees()
public double[] treeWeights()
public void save(SparkContext sc, String path)
SaveableThis saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
 The model may be loaded using Loader.load.
 
public double[] evaluateEachIteration(RDD<LabeledPoint> data, Loss loss)
data - RDD of LabeledPointloss - evaluation metric.public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_()
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1)
public double predict(Vector features)
features - array representing a single data pointpublic RDD<Object> predict(RDD<Vector> features)
features - RDD representing data points to be predictedpublic JavaRDD<Double> predict(JavaRDD<Vector> features)
org.apache.spark.mllib.tree.model.TreeEnsembleModel.predict.features - (undocumented)public String toString()
toString in class Objectpublic String toDebugString()
public int numTrees()
public int totalNumNodes()