public class IndexedRowMatrix extends Object implements DistributedMatrix
DistributedMatrix with
 indexed rows.
 param: rows indexed rows of this matrix param: nRows number of rows. A non-positive value means unknown, and then the number of rows will be determined by the max row index plus one. param: nCols number of columns. A non-positive value means unknown, and then the number of columns will be determined by the size of the first row.
| Constructor and Description | 
|---|
| IndexedRowMatrix(RDD<IndexedRow> rows)Alternative constructor leaving matrix dimensions to be determined automatically. | 
| IndexedRowMatrix(RDD<IndexedRow> rows,
                long nRows,
                int nCols) | 
| Modifier and Type | Method and Description | 
|---|---|
| CoordinateMatrix | columnSimilarities()Compute all cosine similarities between columns of this matrix using the brute-force
 approach of computing normalized dot products. | 
| Matrix | computeGramianMatrix()Computes the Gramian matrix  A^T A. | 
| SingularValueDecomposition<IndexedRowMatrix,Matrix> | computeSVD(int k,
          boolean computeU,
          double rCond)Computes the singular value decomposition of this IndexedRowMatrix. | 
| IndexedRowMatrix | multiply(Matrix B)Multiply this matrix by a local matrix on the right. | 
| long | numCols()Gets or computes the number of columns. | 
| long | numRows()Gets or computes the number of rows. | 
| RDD<IndexedRow> | rows() | 
| BlockMatrix | toBlockMatrix()Converts to BlockMatrix. | 
| BlockMatrix | toBlockMatrix(int rowsPerBlock,
             int colsPerBlock)Converts to BlockMatrix. | 
| CoordinateMatrix | toCoordinateMatrix()Converts this matrix to a
  CoordinateMatrix. | 
| RowMatrix | toRowMatrix()Drops row indices and converts this matrix to a
  RowMatrix. | 
public IndexedRowMatrix(RDD<IndexedRow> rows, long nRows, int nCols)
public IndexedRowMatrix(RDD<IndexedRow> rows)
public CoordinateMatrix columnSimilarities()
public Matrix computeGramianMatrix()
A^T A.
 public SingularValueDecomposition<IndexedRowMatrix,Matrix> computeSVD(int k, boolean computeU, double rCond)
 The cost and implementation of this method is identical to that in
 RowMatrix
 With the addition of indices.
 
At most k largest non-zero singular values and associated vectors are returned. If there are k such values, then the dimensions of the return will be:
 U is an IndexedRowMatrix of size m x k that
 satisfies U'U = eye(k),
 s is a Vector of size k, holding the singular values in descending order,
 and V is a local Matrix of size n x k that satisfies V'V = eye(k).
 
k - number of singular values to keep. We might return less than k if there are
          numerically zero singular values. See rCond.computeU - whether to compute UrCond - the reciprocal condition number. All singular values smaller than rCond * sigma(0)
              are treated as zero, where sigma(0) is the largest singular value.public IndexedRowMatrix multiply(Matrix B)
B - a local matrix whose number of rows must match the number of columns of this matrixpublic long numCols()
DistributedMatrixnumCols in interface DistributedMatrixpublic long numRows()
DistributedMatrixnumRows in interface DistributedMatrixpublic RDD<IndexedRow> rows()
public BlockMatrix toBlockMatrix()
public BlockMatrix toBlockMatrix(int rowsPerBlock, int colsPerBlock)
rowsPerBlock - The number of rows of each block. The blocks at the bottom edge may have
                     a smaller value. Must be an integer value greater than 0.colsPerBlock - The number of columns of each block. The blocks at the right edge may have
                     a smaller value. Must be an integer value greater than 0.BlockMatrixpublic CoordinateMatrix toCoordinateMatrix()
CoordinateMatrix.