public class MulticlassMetrics
extends Object
param: predictionAndLabels an RDD of (prediction, label, weight, probability) or (prediction, label, weight) or (prediction, label) tuples.
| Constructor and Description | 
|---|
| MulticlassMetrics(RDD<? extends scala.Product> predictionAndLabels) | 
| Modifier and Type | Method and Description | 
|---|---|
| double | accuracy() | 
| Matrix | confusionMatrix()Returns confusion matrix:
 predicted classes are in columns,
 they are ordered by class label ascending,
 as in "labels" | 
| double | falsePositiveRate(double label)Returns false positive rate for a given label (category) | 
| double | fMeasure(double label)Returns f1-measure for a given label (category) | 
| double | fMeasure(double label,
        double beta)Returns f-measure for a given label (category) | 
| double | hammingLoss() | 
| double[] | labels() | 
| double | logLoss(double eps)Returns the log-loss, aka logistic loss or cross-entropy loss. | 
| double | precision(double label)Returns precision for a given label (category) | 
| double | recall(double label)Returns recall for a given label (category) | 
| double | truePositiveRate(double label)Returns true positive rate for a given label (category) | 
| double | weightedFalsePositiveRate() | 
| double | weightedFMeasure() | 
| double | weightedFMeasure(double beta)Returns weighted averaged f-measure | 
| double | weightedPrecision() | 
| double | weightedRecall() | 
| double | weightedTruePositiveRate() | 
public MulticlassMetrics(RDD<? extends scala.Product> predictionAndLabels)
public double accuracy()
public Matrix confusionMatrix()
public double fMeasure(double label,
                       double beta)
label - the label.beta - the beta parameter.public double fMeasure(double label)
label - the label.public double falsePositiveRate(double label)
label - the label.public double hammingLoss()
public double[] labels()
public double logLoss(double eps)
eps - log-loss is undefined for p=0 or p=1, so probabilities are
            clipped to max(eps, min(1 - eps, p)).public double precision(double label)
label - the label.public double recall(double label)
label - the label.public double truePositiveRate(double label)
label - the label.public double weightedFMeasure(double beta)
beta - the beta parameter.public double weightedFMeasure()
public double weightedFalsePositiveRate()
public double weightedPrecision()
public double weightedRecall()
public double weightedTruePositiveRate()