public class BisectingKMeansModel extends Object implements scala.Serializable, Saveable, org.apache.spark.internal.Logging
BisectingKMeans.
 The prediction is done level-by-level from the root node to a leaf node, and at each node among
 its children the closest to the input point is selected.
 param: root the root node of the clustering tree
| Modifier and Type | Class and Description | 
|---|---|
| static class  | BisectingKMeansModel.SaveLoadV1_0$ | 
| static class  | BisectingKMeansModel.SaveLoadV2_0$ | 
| static class  | BisectingKMeansModel.SaveLoadV3_0$ | 
| Constructor and Description | 
|---|
| BisectingKMeansModel(org.apache.spark.mllib.clustering.ClusteringTreeNode root) | 
| Modifier and Type | Method and Description | 
|---|---|
| Vector[] | clusterCenters()Leaf cluster centers. | 
| double | computeCost(JavaRDD<Vector> data)Java-friendly version of  computeCost(). | 
| double | computeCost(RDD<Vector> data)Computes the sum of squared distances between the input points and their corresponding cluster
 centers. | 
| double | computeCost(Vector point)Computes the squared distance between the input point and the cluster center it belongs to. | 
| String | distanceMeasure() | 
| int | k() | 
| static BisectingKMeansModel | load(SparkContext sc,
    String path) | 
| JavaRDD<Integer> | predict(JavaRDD<Vector> points)Java-friendly version of  predict(). | 
| RDD<Object> | predict(RDD<Vector> points)Predicts the indices of the clusters that the input points belong to. | 
| int | predict(Vector point)Predicts the index of the cluster that the input point belongs to. | 
| void | save(SparkContext sc,
    String path)Save this model to the given path. | 
| double | trainingCost() | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic BisectingKMeansModel(org.apache.spark.mllib.clustering.ClusteringTreeNode root)
public static BisectingKMeansModel load(SparkContext sc, String path)
public String distanceMeasure()
public double trainingCost()
public Vector[] clusterCenters()
public int k()
public int predict(Vector point)
point - (undocumented)public RDD<Object> predict(RDD<Vector> points)
points - (undocumented)public JavaRDD<Integer> predict(JavaRDD<Vector> points)
predict().points - (undocumented)public double computeCost(Vector point)
point - (undocumented)public double computeCost(RDD<Vector> data)
data - (undocumented)public double computeCost(JavaRDD<Vector> data)
computeCost().data - (undocumented)public void save(SparkContext sc, String path)
SaveableThis saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
 The model may be loaded using Loader.load.