public class Correlation
extends Object
 The functions in this package generalize the functions in Dataset.stat()
 to spark.ml's Vector types.
| Constructor and Description | 
|---|
| Correlation() | 
| Modifier and Type | Method and Description | 
|---|---|
| static Dataset<Row> | corr(Dataset<?> dataset,
    String column)Compute the Pearson correlation matrix for the input Dataset of Vectors. | 
| static Dataset<Row> | corr(Dataset<?> dataset,
    String column,
    String method)Compute the correlation matrix for the input Dataset of Vectors using the specified method. | 
public static Dataset<Row> corr(Dataset<?> dataset, String column, String method)
pearson (default), spearman.
 dataset - A dataset or a dataframecolumn - The name of the column of vectors for which the correlation coefficient needs
               to be computed. This must be a column of the dataset, and it must contain
               Vector objects.method - String specifying the method to use for computing correlation.
               Supported: pearson (default), spearman$METHODNAME($COLUMN).IllegalArgumentException - if the column is not a valid column in the dataset, or if
                                  the content of this column is not of type Vector.
 Here is how to access the correlation coefficient:
    val data: Dataset[Vector] = ...
    val Row(coeff: Matrix) = Correlation.corr(data, "value").head
    // coeff now contains the Pearson correlation matrix.
  method = "spearman"
 to avoid recomputing the common lineage.