public class LinearRegressionSummary
extends Object
implements scala.Serializable
 param:  predictions predictions output by the model's transform method.
 param:  predictionCol Field in "predictions" which gives the predicted value of the label at
                      each instance.
 param:  labelCol Field in "predictions" which gives the true label of each instance.
 param:  featuresCol Field in "predictions" which gives the features of each instance as a vector.
| Modifier and Type | Method and Description | 
|---|---|
| double[] | coefficientStandardErrors() | 
| long | degreesOfFreedom()Degrees of freedom | 
| double[] | devianceResiduals() | 
| double | explainedVariance()Returns the explained variance regression score. | 
| String | featuresCol() | 
| String | labelCol() | 
| double | meanAbsoluteError()Returns the mean absolute error, which is a risk function corresponding to the
 expected value of the absolute error loss or l1-norm loss. | 
| double | meanSquaredError()Returns the mean squared error, which is a risk function corresponding to the
 expected value of the squared error loss or quadratic loss. | 
| long | numInstances() | 
| String | predictionCol() | 
| Dataset<Row> | predictions() | 
| double[] | pValues() | 
| double | r2()Returns R^2^, the coefficient of determination. | 
| double | r2adj()Returns Adjusted R^2^, the adjusted coefficient of determination. | 
| Dataset<Row> | residuals() | 
| double | rootMeanSquaredError()Returns the root mean squared error, which is defined as the square root of
 the mean squared error. | 
| double[] | tValues() | 
public double[] coefficientStandardErrors()
public long degreesOfFreedom()
public double[] devianceResiduals()
public double explainedVariance()
public String featuresCol()
public String labelCol()
public double meanAbsoluteError()
public double meanSquaredError()
public long numInstances()
public double[] pValues()
public String predictionCol()
public double r2()
public double r2adj()
public double rootMeanSquaredError()
public double[] tValues()