public abstract class Evaluator extends Object implements Params
| Constructor and Description | 
|---|
| Evaluator() | 
| Modifier and Type | Method and Description | 
|---|---|
| abstract Evaluator | copy(ParamMap extra)Creates a copy of this instance with the same UID and some extra params. | 
| abstract double | evaluate(Dataset<?> dataset)Evaluates model output and returns a scalar metric. | 
| double | evaluate(Dataset<?> dataset,
        ParamMap paramMap)Evaluates model output and returns a scalar metric. | 
| boolean | isLargerBetter()Indicates whether the metric returned by  evaluateshould be maximized (true, default)
 or minimized (false). | 
| Param<?>[] | params()Returns all params sorted by their names. | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, set, set, set, setDefault, setDefault, shouldOwntoString, uidpublic abstract Evaluator copy(ParamMap extra)
ParamsdefaultCopy().public double evaluate(Dataset<?> dataset, ParamMap paramMap)
isLargerBetter specifies whether larger values are better.
 dataset - a dataset that contains labels/observations and predictions.paramMap - parameter map that specifies the input columns and output metricspublic abstract double evaluate(Dataset<?> dataset)
isLargerBetter specifies whether larger values are better.
 dataset - a dataset that contains labels/observations and predictions.public boolean isLargerBetter()
evaluate should be maximized (true, default)
 or minimized (false).
 A given evaluator may support multiple metrics which may be maximized or minimized.