public class NaiveBayesModel extends ProbabilisticClassificationModel<Vector,NaiveBayesModel> implements NaiveBayesParams, MLWritable
NaiveBayes
 param: pi log of class priors, whose dimension is C (number of classes) param: theta log of class conditional probabilities, whose dimension is C (number of classes) by D (number of features) param: sigma variance of each feature, whose dimension is C (number of classes) by D (number of features). This matrix is only available when modelType is set Gaussian.
| Modifier and Type | Method and Description | 
|---|---|
| NaiveBayesModel | copy(ParamMap extra)Creates a copy of this instance with the same UID and some extra params. | 
| static NaiveBayesModel | load(String path) | 
| Param<String> | modelType()The model type which is a string (case-sensitive). | 
| int | numClasses()Number of classes (values which the label can take). | 
| int | numFeatures()Returns the number of features the model was trained on. | 
| Vector | pi() | 
| Vector | predictRaw(Vector features)Raw prediction for each possible label. | 
| static MLReader<NaiveBayesModel> | read() | 
| Matrix | sigma() | 
| DoubleParam | smoothing()The smoothing parameter. | 
| Matrix | theta() | 
| String | toString() | 
| String | uid()An immutable unique ID for the object and its derivatives. | 
| Param<String> | weightCol()Param for weight column name. | 
| MLWriter | write()Returns an  MLWriterinstance for this ML instance. | 
normalizeToProbabilitiesInPlace, predictProbability, probabilityCol, setProbabilityCol, setThresholds, thresholds, transform, transformSchemapredict, rawPredictionCol, setRawPredictionCol, transformImplfeaturesCol, labelCol, predictionCol, setFeaturesCol, setPredictionColtransform, transform, transformparamsgetModelType, getSmoothingvalidateAndTransformSchemagetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwngetWeightColsavevalidateAndTransformSchemagetRawPredictionCol, rawPredictionColgetProbabilityColgetThresholds$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<NaiveBayesModel> read()
public static NaiveBayesModel load(String path)
public final DoubleParam smoothing()
NaiveBayesParamssmoothing in interface NaiveBayesParamspublic final Param<String> modelType()
NaiveBayesParamsmodelType in interface NaiveBayesParamspublic final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic String uid()
Identifiableuid in interface Identifiablepublic Vector pi()
public Matrix theta()
public Matrix sigma()
public int numFeatures()
PredictionModelnumFeatures in class PredictionModel<Vector,NaiveBayesModel>public int numClasses()
ClassificationModelnumClasses in class ClassificationModel<Vector,NaiveBayesModel>public Vector predictRaw(Vector features)
ClassificationModeltransform() and output rawPredictionCol.
 predictRaw in class ClassificationModel<Vector,NaiveBayesModel>features - (undocumented)public NaiveBayesModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<NaiveBayesModel>extra - (undocumented)public String toString()
toString in interface IdentifiabletoString in class Objectpublic MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritable