public class BinaryLogisticRegressionSummaryImpl extends LogisticRegressionSummaryImpl implements BinaryLogisticRegressionSummary
 param:  predictions dataframe output by the model's transform method.
 param:  probabilityCol field in "predictions" which gives the probability of
                       each class as a vector.
 param:  predictionCol field in "predictions" which gives the prediction of
                      each class as a double.
 param:  labelCol field in "predictions" which gives the true label of each instance.
 param:  featuresCol field in "predictions" which gives the features of each instance as a vector.
 param:  weightCol field in "predictions" which gives the weight of each instance.
| Constructor and Description | 
|---|
| BinaryLogisticRegressionSummaryImpl(Dataset<Row> predictions,
                                   String probabilityCol,
                                   String predictionCol,
                                   String labelCol,
                                   String featuresCol,
                                   String weightCol) | 
| Modifier and Type | Method and Description | 
|---|---|
| double | areaUnderROC()Computes the area under the receiver operating characteristic (ROC) curve. | 
| Dataset<Row> | fMeasureByThreshold()Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0. | 
| Dataset<Row> | pr()Returns the precision-recall curve, which is a Dataframe containing
 two fields recall, precision with (0.0, 1.0) prepended to it. | 
| Dataset<Row> | precisionByThreshold()Returns a dataframe with two fields (threshold, precision) curve. | 
| Dataset<Row> | recallByThreshold()Returns a dataframe with two fields (threshold, recall) curve. | 
| Dataset<Row> | roc()Returns the receiver operating characteristic (ROC) curve,
 which is a Dataframe having two fields (FPR, TPR)
 with (0.0, 0.0) prepended and (1.0, 1.0) appended to it. | 
featuresCol, labelCol, predictionCol, predictions, probabilityCol, weightColequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitscoreColasBinary, featuresCol, probabilityColaccuracy, falsePositiveRateByLabel, fMeasureByLabel, fMeasureByLabel, labelCol, labels, precisionByLabel, predictionCol, predictions, recallByLabel, truePositiveRateByLabel, weightCol, weightedFalsePositiveRate, weightedFMeasure, weightedFMeasure, weightedPrecision, weightedRecall, weightedTruePositiveRatepublic double areaUnderROC()
BinaryClassificationSummaryareaUnderROC in interface BinaryClassificationSummarypublic Dataset<Row> fMeasureByThreshold()
BinaryClassificationSummaryfMeasureByThreshold in interface BinaryClassificationSummarypublic Dataset<Row> pr()
BinaryClassificationSummarypr in interface BinaryClassificationSummarypublic Dataset<Row> precisionByThreshold()
BinaryClassificationSummaryprecisionByThreshold in interface BinaryClassificationSummarypublic Dataset<Row> recallByThreshold()
BinaryClassificationSummaryrecallByThreshold in interface BinaryClassificationSummarypublic Dataset<Row> roc()
BinaryClassificationSummaryroc in interface BinaryClassificationSummary