public class GraphGenerators
extends Object
| Constructor and Description | 
|---|
| GraphGenerators() | 
| Modifier and Type | Method and Description | 
|---|---|
| static Edge<Object>[] | generateRandomEdges(int src,
                   int numEdges,
                   int maxVertexId,
                   long seed) | 
| static Graph<scala.Tuple2<Object,Object>,Object> | gridGraph(SparkContext sc,
         int rows,
         int cols)Create  rowsbycolsgrid graph with each vertex connected to its
 row+1 and col+1 neighbors. | 
| static Graph<Object,Object> | logNormalGraph(SparkContext sc,
              int numVertices,
              int numEParts,
              double mu,
              double sigma,
              long seed)Generate a graph whose vertex out degree distribution is log normal. | 
| static void | org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) | 
| static org.slf4j.Logger | org$apache$spark$internal$Logging$$log_() | 
| static double | RMATa() | 
| static double | RMATb() | 
| static double | RMATc() | 
| static double | RMATd() | 
| static Graph<Object,Object> | rmatGraph(SparkContext sc,
         int requestedNumVertices,
         int numEdges)A random graph generator using the R-MAT model, proposed in
 "R-MAT: A Recursive Model for Graph Mining" by Chakrabarti et al. | 
| static Graph<Object,Object> | starGraph(SparkContext sc,
         int nverts)Create a star graph with vertex 0 being the center. | 
public static double RMATa()
public static double RMATb()
public static double RMATd()
public static Graph<Object,Object> logNormalGraph(SparkContext sc, int numVertices, int numEParts, double mu, double sigma, long seed)
The default values for mu and sigma are taken from the Pregel paper:
Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. SIGMOD '10.
If the seed is -1 (default), a random seed is chosen. Otherwise, use the user-specified seed.
sc - Spark ContextnumVertices - number of vertices in generated graphnumEParts - (optional) number of partitionsmu - (optional, default: 4.0) mean of out-degree distributionsigma - (optional, default: 1.3) standard deviation of out-degree distributionseed - (optional, default: -1) seed for RNGs, -1 causes a random seed to be chosenpublic static double RMATc()
public static Edge<Object>[] generateRandomEdges(int src, int numEdges, int maxVertexId, long seed)
public static Graph<Object,Object> rmatGraph(SparkContext sc, int requestedNumVertices, int numEdges)
See http://www.cs.cmu.edu/~christos/PUBLICATIONS/siam04.pdf.
sc - (undocumented)requestedNumVertices - (undocumented)numEdges - (undocumented)public static Graph<scala.Tuple2<Object,Object>,Object> gridGraph(SparkContext sc, int rows, int cols)
rows by cols grid graph with each vertex connected to its
 row+1 and col+1 neighbors.  Vertex ids are assigned in row major
 order.
 sc - the spark context in which to construct the graphrows - the number of rowscols - the number of columns
 public static Graph<Object,Object> starGraph(SparkContext sc, int nverts)
sc - the spark context in which to construct the graphnverts - the number of vertices in the star
 nverts vertices with vertex 0
 being the center vertex.public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_()
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1)