class RDDBarrier[T] extends AnyRef
:: Experimental :: Wraps an RDD in a barrier stage, which forces Spark to launch tasks of this stage together. org.apache.spark.rdd.RDDBarrier instances are created by org.apache.spark.rdd.RDD#barrier.
- Annotations
- @Experimental() @Since( "2.4.0" )
- Source
- RDDBarrier.scala
- Alphabetic
- By Inheritance
- RDDBarrier
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
mapPartitions[S](f: (Iterator[T]) ⇒ Iterator[S], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[S]): RDD[S]
:: Experimental :: Returns a new RDD by applying a function to each partition of the wrapped RDD, where tasks are launched together in a barrier stage.
:: Experimental :: Returns a new RDD by applying a function to each partition of the wrapped RDD, where tasks are launched together in a barrier stage. The interface is the same as org.apache.spark.rdd.RDD#mapPartitions. Please see the API doc there.
- Annotations
- @Experimental() @Since( "2.4.0" )
- See also
-
def
mapPartitionsWithIndex[S](f: (Int, Iterator[T]) ⇒ Iterator[S], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[S]): RDD[S]
:: Experimental :: Returns a new RDD by applying a function to each partition of the wrapped RDD, while tracking the index of the original partition.
:: Experimental :: Returns a new RDD by applying a function to each partition of the wrapped RDD, while tracking the index of the original partition. And all tasks are launched together in a barrier stage. The interface is the same as org.apache.spark.rdd.RDD#mapPartitionsWithIndex. Please see the API doc there.
- Annotations
- @Experimental() @Since( "3.0.0" )
- See also
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()