org.apache.spark.ml.regression
GeneralizedLinearRegressionModel
Companion object GeneralizedLinearRegressionModel
class GeneralizedLinearRegressionModel extends RegressionModel[Vector, GeneralizedLinearRegressionModel] with GeneralizedLinearRegressionBase with MLWritable with HasTrainingSummary[GeneralizedLinearRegressionTrainingSummary]
Model produced by GeneralizedLinearRegression.
- Annotations
- @Since( "2.0.0" )
- Source
- GeneralizedLinearRegression.scala
- Grouped
- Alphabetic
- By Inheritance
- GeneralizedLinearRegressionModel
- HasTrainingSummary
- MLWritable
- GeneralizedLinearRegressionBase
- HasAggregationDepth
- HasSolver
- HasWeightCol
- HasRegParam
- HasTol
- HasMaxIter
- HasFitIntercept
- RegressionModel
- PredictionModel
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
val
aggregationDepth: IntParam
Param for suggested depth for treeAggregate (>= 2).
Param for suggested depth for treeAggregate (>= 2).
- Definition Classes
- HasAggregationDepth
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
def
clear(param: Param[_]): GeneralizedLinearRegressionModel.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
coefficients: Vector
- Annotations
- @Since( "2.0.0" )
-
def
copy(extra: ParamMap): GeneralizedLinearRegressionModel
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- GeneralizedLinearRegressionModel → Model → Transformer → PipelineStage → Params
- Annotations
- @Since( "2.0.0" )
-
def
copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
evaluate(dataset: Dataset[_]): GeneralizedLinearRegressionSummary
Evaluate the model on the given dataset, returning a summary of the results.
Evaluate the model on the given dataset, returning a summary of the results.
- Annotations
- @Since( "2.0.0" )
-
def
explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
-
def
explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
-
final
val
family: Param[String]
Param for the name of family which is a description of the error distribution to be used in the model.
Param for the name of family which is a description of the error distribution to be used in the model. Supported options: "gaussian", "binomial", "poisson", "gamma" and "tweedie". Default is "gaussian".
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.0.0" )
-
final
val
featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
-
def
featuresDataType: DataType
Returns the SQL DataType corresponding to the FeaturesType type parameter.
Returns the SQL DataType corresponding to the FeaturesType type parameter.
This is used by
validateAndTransformSchema()
. This workaround is needed since SQL has different APIs for Scala and Java.The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector.
- Attributes
- protected
- Definition Classes
- PredictionModel
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
val
fitIntercept: BooleanParam
Param for whether to fit an intercept term.
Param for whether to fit an intercept term.
- Definition Classes
- HasFitIntercept
-
final
def
get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
-
final
def
getAggregationDepth: Int
- Definition Classes
- HasAggregationDepth
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
-
def
getFamily: String
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.0.0" )
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
final
def
getFitIntercept: Boolean
- Definition Classes
- HasFitIntercept
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
def
getLink: String
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.0.0" )
-
def
getLinkPower: Double
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.2.0" )
-
def
getLinkPredictionCol: String
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.0.0" )
-
final
def
getMaxIter: Int
- Definition Classes
- HasMaxIter
-
def
getOffsetCol: String
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.3.0" )
-
final
def
getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
final
def
getRegParam: Double
- Definition Classes
- HasRegParam
-
final
def
getSolver: String
- Definition Classes
- HasSolver
-
final
def
getTol: Double
- Definition Classes
- HasTol
-
def
getVariancePower: Double
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.2.0" )
-
final
def
getWeightCol: String
- Definition Classes
- HasWeightCol
-
final
def
hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
-
def
hasParent: Boolean
Indicates whether this Model has a corresponding parent.
-
def
hasSummary: Boolean
Indicates whether a training summary exists for this model instance.
Indicates whether a training summary exists for this model instance.
- Definition Classes
- HasTrainingSummary
- Annotations
- @Since( "3.0.0" )
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
val
intercept: Double
- Annotations
- @Since( "2.0.0" )
-
final
def
isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
-
final
val
link: Param[String]
Param for the name of link function which provides the relationship between the linear predictor and the mean of the distribution function.
Param for the name of link function which provides the relationship between the linear predictor and the mean of the distribution function. Supported options: "identity", "log", "inverse", "logit", "probit", "cloglog" and "sqrt". This is used only when family is not "tweedie". The link function for the "tweedie" family must be specified through linkPower.
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.0.0" )
-
final
val
linkPower: DoubleParam
Param for the index in the power link function.
Param for the index in the power link function. Only applicable to the Tweedie family. Note that link power 0, 1, -1 or 0.5 corresponds to the Log, Identity, Inverse or Sqrt link, respectively. When not set, this value defaults to 1 - variancePower, which matches the R "statmod" package.
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.2.0" )
-
final
val
linkPredictionCol: Param[String]
Param for link prediction (linear predictor) column name.
Param for link prediction (linear predictor) column name. Default is not set, which means we do not output link prediction.
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.0.0" )
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
maxIter: IntParam
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
- HasMaxIter
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
numFeatures: Int
Returns the number of features the model was trained on.
Returns the number of features the model was trained on. If unknown, returns -1
- Definition Classes
- GeneralizedLinearRegressionModel → PredictionModel
-
final
val
offsetCol: Param[String]
Param for offset column name.
Param for offset column name. If this is not set or empty, we treat all instance offsets as 0.0. The feature specified as offset has a constant coefficient of 1.0.
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.3.0" )
-
lazy val
params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
-
var
parent: Estimator[GeneralizedLinearRegressionModel]
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
- Model
- Note
For ensembles' component Models, this value can be null.
-
def
predict(features: Vector): Double
Predict label for the given features.
Predict label for the given features. This method is used to implement
transform()
and output predictionCol.- Definition Classes
- GeneralizedLinearRegressionModel → PredictionModel
-
final
val
predictionCol: Param[String]
Param for prediction column name.
Param for prediction column name.
- Definition Classes
- HasPredictionCol
-
final
val
regParam: DoubleParam
Param for regularization parameter (>= 0).
Param for regularization parameter (>= 0).
- Definition Classes
- HasRegParam
-
def
save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): GeneralizedLinearRegressionModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): GeneralizedLinearRegressionModel.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): GeneralizedLinearRegressionModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
-
final
def
setDefault(paramPairs: ParamPair[_]*): GeneralizedLinearRegressionModel.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): GeneralizedLinearRegressionModel.this.type
Sets a default value for a param.
-
def
setFeaturesCol(value: String): GeneralizedLinearRegressionModel
- Definition Classes
- PredictionModel
-
def
setLinkPredictionCol(value: String): GeneralizedLinearRegressionModel.this.type
Sets the link prediction (linear predictor) column name.
Sets the link prediction (linear predictor) column name.
- Annotations
- @Since( "2.0.0" )
-
def
setParent(parent: Estimator[GeneralizedLinearRegressionModel]): GeneralizedLinearRegressionModel
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
- Model
-
def
setPredictionCol(value: String): GeneralizedLinearRegressionModel
- Definition Classes
- PredictionModel
-
final
val
solver: Param[String]
The solver algorithm for optimization.
The solver algorithm for optimization. Supported options: "irls" (iteratively reweighted least squares). Default: "irls"
- Definition Classes
- GeneralizedLinearRegressionBase → HasSolver
- Annotations
- @Since( "2.0.0" )
-
def
summary: GeneralizedLinearRegressionTrainingSummary
Gets R-like summary of model on training set.
Gets R-like summary of model on training set. An exception is thrown if there is no summary available.
- Definition Classes
- GeneralizedLinearRegressionModel → HasTrainingSummary
- Annotations
- @Since( "2.0.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- GeneralizedLinearRegressionModel → Identifiable → AnyRef → Any
- Annotations
- @Since( "3.0.0" )
-
final
val
tol: DoubleParam
Param for the convergence tolerance for iterative algorithms (>= 0).
Param for the convergence tolerance for iterative algorithms (>= 0).
- Definition Classes
- HasTol
-
def
transform(dataset: Dataset[_]): DataFrame
Transforms dataset by reading from featuresCol, calling
predict
, and storing the predictions as a new column predictionCol.Transforms dataset by reading from featuresCol, calling
predict
, and storing the predictions as a new column predictionCol.- dataset
input dataset
- returns
transformed dataset with predictionCol of type
Double
- Definition Classes
- GeneralizedLinearRegressionModel → PredictionModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
input dataset
- paramMap
additional parameters, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
input dataset
- firstParamPair
the first param pair, overwrite embedded params
- otherParamPairs
other param pairs, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformImpl(dataset: Dataset[_]): DataFrame
- Attributes
- protected
- Definition Classes
- GeneralizedLinearRegressionModel → PredictionModel
-
def
transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- PredictionModel → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- GeneralizedLinearRegressionModel → Identifiable
- Annotations
- @Since( "2.0.0" )
-
def
validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
input schema
- fitting
whether this is in fitting
- featuresDataType
SQL DataType for FeaturesType. E.g.,
VectorUDT
for vector features.- returns
output schema
- Definition Classes
- GeneralizedLinearRegressionBase → PredictorParams
- Annotations
- @Since( "2.0.0" )
-
final
val
variancePower: DoubleParam
Param for the power in the variance function of the Tweedie distribution which provides the relationship between the variance and mean of the distribution.
Param for the power in the variance function of the Tweedie distribution which provides the relationship between the variance and mean of the distribution. Only applicable to the Tweedie family. (see Tweedie Distribution (Wikipedia)) Supported values: 0 and [1, Inf). Note that variance power 0, 1, or 2 corresponds to the Gaussian, Poisson or Gamma family, respectively.
- Definition Classes
- GeneralizedLinearRegressionBase
- Annotations
- @Since( "2.2.0" )
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
val
weightCol: Param[String]
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
- HasWeightCol
-
def
write: MLWriter
Returns a org.apache.spark.ml.util.MLWriter instance for this ML instance.
Returns a org.apache.spark.ml.util.MLWriter instance for this ML instance.
For GeneralizedLinearRegressionModel, this does NOT currently save the training summary. An option to save summary may be added in the future.
- Definition Classes
- GeneralizedLinearRegressionModel → MLWritable
- Annotations
- @Since( "2.0.0" )
Inherited from HasTrainingSummary[GeneralizedLinearRegressionTrainingSummary]
Inherited from MLWritable
Inherited from GeneralizedLinearRegressionBase
Inherited from HasAggregationDepth
Inherited from HasSolver
Inherited from HasWeightCol
Inherited from HasRegParam
Inherited from HasTol
Inherited from HasMaxIter
Inherited from HasFitIntercept
Inherited from RegressionModel[Vector, GeneralizedLinearRegressionModel]
Inherited from PredictionModel[Vector, GeneralizedLinearRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Model[GeneralizedLinearRegressionModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.