Package org.apache.spark.ml.clustering
Class BisectingKMeansSummary
Object
org.apache.spark.ml.clustering.ClusteringSummary
org.apache.spark.ml.clustering.BisectingKMeansSummary
- All Implemented Interfaces:
- Serializable,- Summary
Summary of BisectingKMeans.
 
 param:  predictions  DataFrame produced by BisectingKMeansModel.transform().
 param:  predictionCol  Name for column of predicted clusters in predictions.
 param:  featuresCol  Name for column of features in predictions.
 param:  k  Number of clusters.
 param:  numIter  Number of iterations.
 param:  trainingCost Sum of the cost to the nearest centroid for all points in the training
                     dataset. This is equivalent to sklearn's inertia.
- See Also:
- 
Method SummaryMethods inherited from class org.apache.spark.ml.clustering.ClusteringSummarycluster, clusterSizes, featuresCol, k, numIter, predictionCol, predictions
- 
Method Details- 
trainingCostpublic double trainingCost()
 
-