Class LocalKMeans
Object
org.apache.spark.mllib.clustering.LocalKMeans
An utility object to run K-means locally. This is private to the ML package because it's used
in the initialization of KMeans but not meant to be publicly exposed.
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionstatic org.apache.spark.mllib.clustering.VectorWithNorm[]kMeansPlusPlus(int seed, org.apache.spark.mllib.clustering.VectorWithNorm[] points, double[] weights, int k, int maxIterations) Run K-means++ on the weighted point setpoints.static org.apache.spark.internal.Logging.LogStringContextLogStringContext(scala.StringContext sc) static org.slf4j.Loggerstatic voidorg$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1)
-
Constructor Details
-
LocalKMeans
public LocalKMeans()
-
-
Method Details
-
kMeansPlusPlus
public static org.apache.spark.mllib.clustering.VectorWithNorm[] kMeansPlusPlus(int seed, org.apache.spark.mllib.clustering.VectorWithNorm[] points, double[] weights, int k, int maxIterations) Run K-means++ on the weighted point setpoints. This first does the K-means++ initialization procedure and then rounds of Lloyd's algorithm.- Parameters:
seed- (undocumented)points- (undocumented)weights- (undocumented)k- (undocumented)maxIterations- (undocumented)- Returns:
- (undocumented)
-
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() -
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) -
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc)
-