Package org.apache.spark.graphx.util
Class GraphGenerators
Object
org.apache.spark.graphx.util.GraphGenerators
A collection of graph generating functions.
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiongenerateRandomEdges(int src, int numEdges, int maxVertexId, long seed) gridGraph(SparkContext sc, int rows, int cols) Createrowsbycolsgrid graph with each vertex connected to its row+1 and col+1 neighbors.logNormalGraph(SparkContext sc, int numVertices, int numEParts, double mu, double sigma, long seed) Generate a graph whose vertex out degree distribution is log normal.static org.apache.spark.internal.Logging.LogStringContextLogStringContext(scala.StringContext sc) static org.slf4j.Loggerstatic voidorg$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) static doubleRMATa()static doubleRMATb()static doubleRMATc()static doubleRMATd()rmatGraph(SparkContext sc, int requestedNumVertices, int numEdges) A random graph generator using the R-MAT model, proposed in "R-MAT: A Recursive Model for Graph Mining" by Chakrabarti et al.starGraph(SparkContext sc, int nverts) Create a star graph with vertex 0 being the center.
-
Constructor Details
-
GraphGenerators
public GraphGenerators()
-
-
Method Details
-
RMATa
public static double RMATa() -
RMATb
public static double RMATb() -
RMATd
public static double RMATd() -
logNormalGraph
public static Graph<Object,Object> logNormalGraph(SparkContext sc, int numVertices, int numEParts, double mu, double sigma, long seed) Generate a graph whose vertex out degree distribution is log normal.The default values for mu and sigma are taken from the Pregel paper:
Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. SIGMOD '10.
If the seed is -1 (default), a random seed is chosen. Otherwise, use the user-specified seed.
- Parameters:
sc- Spark ContextnumVertices- number of vertices in generated graphnumEParts- (optional) number of partitionsmu- (optional, default: 4.0) mean of out-degree distributionsigma- (optional, default: 1.3) standard deviation of out-degree distributionseed- (optional, default: -1) seed for RNGs, -1 causes a random seed to be chosen- Returns:
- Graph object
-
RMATc
public static double RMATc() -
generateRandomEdges
-
rmatGraph
public static Graph<Object,Object> rmatGraph(SparkContext sc, int requestedNumVertices, int numEdges) A random graph generator using the R-MAT model, proposed in "R-MAT: A Recursive Model for Graph Mining" by Chakrabarti et al.See http://www.cs.cmu.edu/~christos/PUBLICATIONS/siam04.pdf.
- Parameters:
sc- (undocumented)requestedNumVertices- (undocumented)numEdges- (undocumented)- Returns:
- (undocumented)
-
gridGraph
public static Graph<scala.Tuple2<Object,Object>, gridGraphObject> (SparkContext sc, int rows, int cols) Createrowsbycolsgrid graph with each vertex connected to its row+1 and col+1 neighbors. Vertex ids are assigned in row major order.- Parameters:
sc- the spark context in which to construct the graphrows- the number of rowscols- the number of columns- Returns:
- A graph containing vertices with the row and column ids as their attributes and edge values as 1.0.
-
starGraph
Create a star graph with vertex 0 being the center.- Parameters:
sc- the spark context in which to construct the graphnverts- the number of vertices in the star- Returns:
- A star graph containing
nvertsvertices with vertex 0 being the center vertex.
-
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() -
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) -
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc)
-