pyspark.sql.DataFrame.schema#
- property DataFrame.schema#
Returns the schema of this
DataFrame
as apyspark.sql.types.StructType
.New in version 1.3.0.
Changed in version 3.4.0: Supports Spark Connect.
- Returns
StructType
Examples
Example 1: Retrieve the inferred schema of the current DataFrame.
>>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) >>> df.schema StructType([StructField('age', LongType(), True), StructField('name', StringType(), True)])
Example 2: Retrieve the schema of the current DataFrame (DDL-formatted schema).
>>> df = spark.createDataFrame( ... [(14, "Tom"), (23, "Alice"), (16, "Bob")], ... "age INT, name STRING") >>> df.schema StructType([StructField('age', IntegerType(), True), StructField('name', StringType(), True)])
Example 3: Retrieve the specified schema of the current DataFrame.
>>> from pyspark.sql.types import StructType, StructField, StringType >>> df = spark.createDataFrame( ... [("a",), ("b",), ("c",)], ... StructType([StructField("value", StringType(), False)])) >>> df.schema StructType([StructField('value', StringType(), False)])