Class MulticlassMetrics
Object
org.apache.spark.mllib.evaluation.MulticlassMetrics
Evaluator for multiclass classification.
 
param: predictionAndLabels an RDD of (prediction, label, weight, probability) or (prediction, label, weight) or (prediction, label) tuples.
- 
Constructor Summary
Constructors - 
Method Summary
Modifier and TypeMethodDescriptiondoubleaccuracy()Returns confusion matrix: predicted classes are in columns, they are ordered by class label ascending, as in "labels"doublefalsePositiveRate(double label) Returns false positive rate for a given label (category)doublefMeasure(double label) Returns f1-measure for a given label (category)doublefMeasure(double label, double beta) Returns f-measure for a given label (category)doubledouble[]labels()doublelogLoss(double eps) Returns the log-loss, aka logistic loss or cross-entropy loss.doubleprecision(double label) Returns precision for a given label (category)doublerecall(double label) Returns recall for a given label (category)doubletruePositiveRate(double label) Returns true positive rate for a given label (category)doubledoubledoubleweightedFMeasure(double beta) Returns weighted averaged f-measuredoubledoubledouble 
- 
Constructor Details
- 
MulticlassMetrics
 
 - 
 - 
Method Details
- 
accuracy
public double accuracy() - 
confusionMatrix
Returns confusion matrix: predicted classes are in columns, they are ordered by class label ascending, as in "labels"- Returns:
 - (undocumented)
 
 - 
fMeasure
public double fMeasure(double label, double beta) Returns f-measure for a given label (category)- Parameters:
 label- the label.beta- the beta parameter.- Returns:
 - (undocumented)
 
 - 
fMeasure
public double fMeasure(double label) Returns f1-measure for a given label (category)- Parameters:
 label- the label.- Returns:
 - (undocumented)
 
 - 
falsePositiveRate
public double falsePositiveRate(double label) Returns false positive rate for a given label (category)- Parameters:
 label- the label.- Returns:
 - (undocumented)
 
 - 
hammingLoss
public double hammingLoss() - 
labels
public double[] labels() - 
logLoss
public double logLoss(double eps) Returns the log-loss, aka logistic loss or cross-entropy loss.- Parameters:
 eps- log-loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)).- Returns:
 - (undocumented)
 
 - 
precision
public double precision(double label) Returns precision for a given label (category)- Parameters:
 label- the label.- Returns:
 - (undocumented)
 
 - 
recall
public double recall(double label) Returns recall for a given label (category)- Parameters:
 label- the label.- Returns:
 - (undocumented)
 
 - 
truePositiveRate
public double truePositiveRate(double label) Returns true positive rate for a given label (category)- Parameters:
 label- the label.- Returns:
 - (undocumented)
 
 - 
weightedFMeasure
public double weightedFMeasure(double beta) Returns weighted averaged f-measure- Parameters:
 beta- the beta parameter.- Returns:
 - (undocumented)
 
 - 
weightedFMeasure
public double weightedFMeasure() - 
weightedFalsePositiveRate
public double weightedFalsePositiveRate() - 
weightedPrecision
public double weightedPrecision() - 
weightedRecall
public double weightedRecall() - 
weightedTruePositiveRate
public double weightedTruePositiveRate() 
 -