public class JavaDoubleRDD
extends Object
Constructor and Description |
---|
JavaDoubleRDD(RDD<Object> srdd) |
Modifier and Type | Method and Description |
---|---|
JavaDoubleRDD |
cache()
Persist this RDD with the default storage level (
MEMORY_ONLY ). |
scala.reflect.ClassTag<Double> |
classTag() |
JavaDoubleRDD |
coalesce(int numPartitions)
Return a new RDD that is reduced into
numPartitions partitions. |
JavaDoubleRDD |
coalesce(int numPartitions,
boolean shuffle)
Return a new RDD that is reduced into
numPartitions partitions. |
JavaDoubleRDD |
distinct()
Return a new RDD containing the distinct elements in this RDD.
|
JavaDoubleRDD |
distinct(int numPartitions)
Return a new RDD containing the distinct elements in this RDD.
|
JavaDoubleRDD |
filter(Function<Double,Boolean> f)
Return a new RDD containing only the elements that satisfy a predicate.
|
Double |
first()
Return the first element in this RDD.
|
static JavaDoubleRDD |
fromRDD(RDD<Object> rdd) |
long[] |
histogram(double[] buckets)
Compute a histogram using the provided buckets.
|
long[] |
histogram(Double[] buckets,
boolean evenBuckets) |
scala.Tuple2<double[],long[]> |
histogram(int bucketCount)
Compute a histogram of the data using bucketCount number of buckets evenly
spaced between the minimum and maximum of the RDD.
|
JavaDoubleRDD |
intersection(JavaDoubleRDD other)
Return the intersection of this RDD and another one.
|
Double |
max()
Returns the maximum element from this RDD as defined by
the default comparator natural order.
|
Double |
mean()
Compute the mean of this RDD's elements.
|
PartialResult<BoundedDouble> |
meanApprox(long timeout)
Approximate operation to return the mean within a timeout.
|
PartialResult<BoundedDouble> |
meanApprox(long timeout,
Double confidence)
Return the approximate mean of the elements in this RDD.
|
Double |
min()
Returns the minimum element from this RDD as defined by
the default comparator natural order.
|
JavaDoubleRDD |
persist(StorageLevel newLevel)
Set this RDD's storage level to persist its values across operations after the first time
it is computed.
|
Double |
popStdev()
Compute the population standard deviation of this RDD's elements.
|
Double |
popVariance()
Compute the population variance of this RDD's elements.
|
RDD<Double> |
rdd() |
JavaDoubleRDD |
repartition(int numPartitions)
Return a new RDD that has exactly numPartitions partitions.
|
JavaDoubleRDD |
sample(boolean withReplacement,
Double fraction)
Return a sampled subset of this RDD.
|
JavaDoubleRDD |
sample(boolean withReplacement,
Double fraction,
long seed)
Return a sampled subset of this RDD.
|
Double |
sampleStdev()
Compute the sample standard deviation of this RDD's elements (which corrects for bias in
estimating the standard deviation by dividing by N-1 instead of N).
|
Double |
sampleVariance()
Compute the sample variance of this RDD's elements (which corrects for bias in
estimating the standard variance by dividing by N-1 instead of N).
|
JavaDoubleRDD |
setName(String name)
Assign a name to this RDD
|
RDD<Object> |
srdd() |
StatCounter |
stats()
Return a
StatCounter object that captures the mean, variance and
count of the RDD's elements in one operation. |
Double |
stdev()
Compute the population standard deviation of this RDD's elements.
|
JavaDoubleRDD |
subtract(JavaDoubleRDD other)
Return an RDD with the elements from
this that are not in other . |
JavaDoubleRDD |
subtract(JavaDoubleRDD other,
int numPartitions)
Return an RDD with the elements from
this that are not in other . |
JavaDoubleRDD |
subtract(JavaDoubleRDD other,
Partitioner p)
Return an RDD with the elements from
this that are not in other . |
Double |
sum()
Add up the elements in this RDD.
|
PartialResult<BoundedDouble> |
sumApprox(long timeout)
Approximate operation to return the sum within a timeout.
|
PartialResult<BoundedDouble> |
sumApprox(long timeout,
Double confidence)
Approximate operation to return the sum within a timeout.
|
static RDD<Object> |
toRDD(JavaDoubleRDD rdd) |
JavaDoubleRDD |
union(JavaDoubleRDD other)
Return the union of this RDD and another one.
|
JavaDoubleRDD |
unpersist()
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
|
JavaDoubleRDD |
unpersist(boolean blocking)
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
|
Double |
variance()
Compute the population variance of this RDD's elements.
|
JavaDoubleRDD |
wrapRDD(RDD<Double> rdd) |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
aggregate, cartesian, checkpoint, collect, collectAsync, collectPartitions, context, count, countApprox, countApprox, countApproxDistinct, countAsync, countByValue, countByValueApprox, countByValueApprox, flatMap, flatMapToDouble, flatMapToPair, fold, foreach, foreachAsync, foreachPartition, foreachPartitionAsync, getCheckpointFile, getNumPartitions, getStorageLevel, glom, groupBy, groupBy, id, isCheckpointed, isEmpty, iterator, keyBy, map, mapPartitions, mapPartitions, mapPartitionsToDouble, mapPartitionsToDouble, mapPartitionsToPair, mapPartitionsToPair, mapPartitionsWithIndex, mapToDouble, mapToPair, max, min, name, partitioner, partitions, pipe, pipe, pipe, pipe, pipe, reduce, saveAsObjectFile, saveAsTextFile, saveAsTextFile, take, takeAsync, takeOrdered, takeOrdered, takeSample, takeSample, toDebugString, toLocalIterator, top, top, treeAggregate, treeAggregate, treeAggregate, treeReduce, treeReduce, zip, zipPartitions, zipWithIndex, zipWithUniqueId
public JavaDoubleRDD(RDD<Object> srdd)
public static JavaDoubleRDD fromRDD(RDD<Object> rdd)
public static RDD<Object> toRDD(JavaDoubleRDD rdd)
public RDD<Object> srdd()
public scala.reflect.ClassTag<Double> classTag()
public RDD<Double> rdd()
public JavaDoubleRDD wrapRDD(RDD<Double> rdd)
public JavaDoubleRDD cache()
MEMORY_ONLY
).public JavaDoubleRDD persist(StorageLevel newLevel)
newLevel
- (undocumented)public JavaDoubleRDD unpersist()
public JavaDoubleRDD unpersist(boolean blocking)
blocking
- Whether to block until all blocks are deleted.public Double first()
JavaRDDLike
public JavaDoubleRDD distinct()
public JavaDoubleRDD distinct(int numPartitions)
numPartitions
- (undocumented)public JavaDoubleRDD filter(Function<Double,Boolean> f)
f
- (undocumented)public JavaDoubleRDD coalesce(int numPartitions)
numPartitions
partitions.numPartitions
- (undocumented)public JavaDoubleRDD coalesce(int numPartitions, boolean shuffle)
numPartitions
partitions.numPartitions
- (undocumented)shuffle
- (undocumented)public JavaDoubleRDD repartition(int numPartitions)
Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data.
If you are decreasing the number of partitions in this RDD, consider using coalesce
,
which can avoid performing a shuffle.
numPartitions
- (undocumented)public JavaDoubleRDD subtract(JavaDoubleRDD other)
this
that are not in other
.
Uses this
partitioner/partition size, because even if other
is huge, the resulting
RDD will be <= us.
other
- (undocumented)public JavaDoubleRDD subtract(JavaDoubleRDD other, int numPartitions)
this
that are not in other
.other
- (undocumented)numPartitions
- (undocumented)public JavaDoubleRDD subtract(JavaDoubleRDD other, Partitioner p)
this
that are not in other
.other
- (undocumented)p
- (undocumented)public JavaDoubleRDD sample(boolean withReplacement, Double fraction)
withReplacement
- (undocumented)fraction
- (undocumented)public JavaDoubleRDD sample(boolean withReplacement, Double fraction, long seed)
withReplacement
- (undocumented)fraction
- (undocumented)seed
- (undocumented)public JavaDoubleRDD union(JavaDoubleRDD other)
.distinct()
to eliminate them).other
- (undocumented)public JavaDoubleRDD intersection(JavaDoubleRDD other)
other
- (undocumented)public Double sum()
public Double min()
public Double max()
public StatCounter stats()
StatCounter
object that captures the mean, variance and
count of the RDD's elements in one operation.public Double mean()
public Double variance()
public Double stdev()
public Double sampleStdev()
public Double sampleVariance()
public Double popStdev()
public Double popVariance()
public PartialResult<BoundedDouble> meanApprox(long timeout, Double confidence)
public PartialResult<BoundedDouble> meanApprox(long timeout)
timeout
- (undocumented)public PartialResult<BoundedDouble> sumApprox(long timeout, Double confidence)
timeout
- (undocumented)confidence
- (undocumented)public PartialResult<BoundedDouble> sumApprox(long timeout)
timeout
- (undocumented)public scala.Tuple2<double[],long[]> histogram(int bucketCount)
bucketCount
- (undocumented)public long[] histogram(double[] buckets)
buckets
- (undocumented)public long[] histogram(Double[] buckets, boolean evenBuckets)
public JavaDoubleRDD setName(String name)